

LISA System Design Overview

Peter Gath, Ulrich Johann, Hans Reiner Schulte, Dennis Weise

EADS Astrium GmbH, Friedrichshafen, Germany

Mark Ayre

EADS Astrium Ltd, Stevenage, United Kingdom

6th LISA Symposium NASA GSFC Greenbelt, Maryland, USA 19-23 June 2006

ESTEC Contract No. 1875604/NL/HB

Overview

O LISA

- Measurement Chain
- Performance
- Spacecraft Design Overview
- Payload Configuration
- Conclusions and Ongoing Work

The LISA Mission - Overview

- Mission goal is to detect gravitational waves and characterize sources
- Measurement principle is laser interferometry with three spacecraft flying in a triangular constellation
- Interferometer arm-length: 5 mio km
- Measurement bandwidth: 0.1 mHz 1 Hz

LISA Measurement Principle – Strap-Down

Laser interferometry between the spacecrafts

- beat-signals between different lasers are recorded on board of each spacecraft
- during ground-processing, different interferometer setups can be synthetically generated with different sensitivities w.r.t. gravitational waves (time-delay interferometry; explained later)

Reference points are proof masses that define the inertial reference

 drag-free control isolates the proof masses from external disturbances (acceleration noise) in order to provide an inertial reference

• Strap-Down system

 measurement from inertial sensor (IS) to IS is split into measurements from optical bench (OB) to IS and from OB to OB

LISA Measurement Chain

Onboard Data Acquisition

downlink

LISA Measurement Chain

Onboard Data Acquisition

Science data

downlink

- clock noise
- · aliasing effects + numerical artifacts
- laser phase noise + local mechanical noise

LISA Measurement Chain On Ground Data Processing

Strain Sensitivity

Requirements & Performance

Requirement Breakdown

From Strain Sensitivity to Engineering Values

Strain Sensitivity

TDI transfer function

Measurement Sensitivity (Single Link)

Path Length Noise

- Main influence above 1 mHz
- laser phase noise
- shot noise

• ...

Acceleration Noise

- Main influence below 1 mHz
- magnetic fluctuations
- suspension actuation cross-talk
- ...

Metrology Error Breakdown

Derivation of Requirements for Optical Metrology

Derive requirements for laser power, telescope diameter, optical readout performance, mechanism noise, alignment errors, thermal stability, ...

Parameter Variations in Optical Components

LISA Measurement - Laser Stability and TDI

Down conversion of high-frequency noise due to aliasing effects and numerical artifacts (currently being investigated)

Acceleration Noise Breakdown

Derivation of Requirements for GRS

6th LISA Symposium, NASA GSFC, Greenbelt, Maryland, USA, 19-23 June 2006

environment, laser power stability, ...

magnetic environment, voltage stability, charge

LISA System Architecture – Launch Stack

Launch Stack (Atlas 531)

Launch stack mass (wet, launch date dependent):

worst case: 4643 kg best case: 4510 kg

LISA Sciencecraft and Propulsion Module

Sciencecraft

Sciencecraft mass: 524 kg (incl. payload)

Propulsion Module

Propulsion module mass: 305 kg (dry)

Max. total ΔV : 1130 m/s

LISA Spacecraft - Unit Accommodation

Payload – Current Design Status (1)

venting ducts

Payload – Current Design Status (2)

Flexible Pivot

LISA Optical Assembly - Core Elements

MLI isolation

Telescope main mirror (40 cm aperture)

Structural baseplate (Ti)

Optical bench (Zerodur)

Valve

Launch lock connector

Gravity Reference Sensor + Caging Mechanism (LTP heritage)

6th LISA Symposium, NASA GSFC, Greenbelt, Maryland, USA, 19-23 June 2006

EADS ASTRIUM

LISA Optical Assembly – Open GRS Option

EADSASTRIUM

MLI isolation

Telescope main mirror (40 cm aperture)

Structural baseplate (Ti)

Optical bench (Zerodur)

Gravity Reference Sensor (LTP heritage)

Volume allocation for gravity compensation mass

Optical Bench – Overview

PAA Mechanism – Piston Noise Breakdown

- Overall allocation for piston-induced path length error:
 - $-3 \text{ pm/}\sqrt{\text{Hz}}$, $1/\text{f}^2 \text{ roll-off below 2.8 mHz}$

Breakdown:

Error source	Symbol	Allocation
Distance of pivot axis from mirror surface	Δ x	< 1 mm
Lateral misalignment of incident beam on mirror	Δ z	< 50 µm
Mirror tilt jitter	δα	$15 \frac{\text{nrad}}{\sqrt{\text{Hz}}} \times \sqrt{1 + \left(\frac{2.8 \text{ mHz}}{f}\right)^4}$
Longitudinal mechanical jitter of pivot axis	δΔ x , δ a	$0.5 \frac{\text{pm}}{\sqrt{\text{Hz}}} \times \sqrt{1 + \left(\frac{2.8 \text{ mHz}}{f}\right)^4}$
Lateral mechanical jitter of pivot axis	δ∆z , δb	$0.5 \frac{\text{nm}}{\sqrt{\text{Hz}}} \times \sqrt{1 + \left(\frac{2.8 \text{ mHz}}{f}\right)^4}$

FEM Analysis - Eigenmodes

- Mode 1: 82.78 Hz
 GRS assembly swinging around z
- Mode 2: 83.01 Hz
 Structural baseplate oscillation in x
- Mode 3: 87.49 Hz
 GRS assembly swinging around y
- Mode 4: 128.47 Hz
 Spider with M2
- All eigenmodes > 80 Hz
- Potential for slightly higher frequencies currently not used due to ongoing payload design update

FEM Analysis – Optical Bench Stress Analysis

Stress at inserts computed as < 3 MPa @ 30 g based on interface forces

Functional Architecture – Laser System Baseline

USO Science Modulation (from Phasemeter)

Pavload Bus

Arm Locking (from Phasemeter)

from Power Monitor on OB

Conclusions and On-Going Work

- A feasible design baseline was established
- Critical points in the design are identified and technology programs will be initiated in order to verify the proposed baseline solutions
- Detailed requirement specifications for all subsystems will be developed until the end of the LISA Mission Formulation study
- Alternative LISA payload design is currently being investigated with the potential of further mass savings, simplification, risk reduction, and complexity reduction

